Skip to contents

Statistical unit names.

Usage

data("namesWR")
data("namesEU")
data("namesIT")
data("namesUS")
data("namesDE")
data("namesFR")
data("namesUK")

Format

A list with all names divided for year and type of units.

Source

World Bank, Eurostat, United States Census and Istat

Examples

data(namesWR)
str(namesWR)
#> 'data.frame':	251 obs. of  19 variables:
#>  $ country        : chr  "indonesia" "malaysia" "chile" "bolivia" ...
#>  $ name_formal    : chr  "Republic of Indonesia" "Malaysia" "Republic of Chile" "Plurinational State of Bolivia" ...
#>  $ name_wb        : chr  "Indonesia" "Malaysia" "Chile" "Bolivia" ...
#>  $ iso2           : chr  "ID" "MY" "CL" "BO" ...
#>  $ iso3           : chr  "IDN" "MYS" "CHL" "BOL" ...
#>  $ iso3_eh        : chr  "IDN" "MYS" "CHL" "BOL" ...
#>  $ iso3_numeric   : chr  "360" "458" "152" "068" ...
#>  $ iso3_un        : chr  "360" "458" "152" "068" ...
#>  $ iso2_wb        : chr  "ID" "MY" "CL" "BO" ...
#>  $ iso3_wb        : chr  "IDN" "MYS" "CHL" "BOL" ...
#>  $ continent      : chr  "Asia" "Asia" "South America" "South America" ...
#>  $ region         : chr  "Asia" "Asia" "Americas" "Americas" ...
#>  $ subregion      : chr  "South-Eastern Asia" "South-Eastern Asia" "South America" "South America" ...
#>  $ region_wb      : chr  "East Asia & Pacific" "East Asia & Pacific" "Latin America & Caribbean" "Latin America & Caribbean" ...
#>  $ type           : chr  "Sovereign country" "Sovereign country" "Sovereign country" "Sovereign country" ...
#>  $ type_economy   : chr  "Emerging region: MI" "Developing region" "Emerging region: G2" "Emerging region: G2" ...
#>  $ type_income    : chr  "Lower middle income" "Upper middle income" "Upper middle income" "Lower middle income" ...
#>  $ type_economy_id: chr  "4" "6" "5" "5" ...
#>  $ type_income_id : chr  "4" "3" "3" "4" ...

data(namesEU)
str(namesEU)
#> List of 6
#>  $ 2003:'data.frame':	1429 obs. of  13 variables:
#>   ..$ id          : chr [1:1429] "FI1A3" "SE082" "SE081" "FI134" ...
#>   ..$ country     : Factor w/ 33 levels "Austria","Belgium",..: 9 30 30 9 22 11 22 11 24 11 ...
#>   ..$ iso2        : Factor w/ 33 levels "AT","BE","BG",..: 11 30 30 11 25 7 25 7 27 7 ...
#>   ..$ iso3        : Factor w/ 33 levels "AUT","BEL","BGR",..: 11 32 32 11 25 7 25 7 27 7 ...
#>   ..$ country_code: int [1:1429] 246 752 752 246 528 276 528 276 616 276 ...
#>   ..$ nuts0_id    : Factor w/ 33 levels "AT","BE","BG",..: 11 29 29 11 24 7 24 7 26 7 ...
#>   ..$ nuts1_id    : Factor w/ 111 levels "AT1","AT2","AT3",..: 37 85 85 37 69 25 69 20 75 21 ...
#>   ..$ nuts2_id    : Factor w/ 309 levels "AT11","AT12",..: 108 239 239 105 192 81 192 63 211 70 ...
#>   ..$ nuts3_id    : chr [1:1429] "FI1A3" "SE082" "SE081" "FI134" ...
#>   ..$ nuts0       : Factor w/ 33 levels "Austria","Belgium",..: 9 30 30 9 22 11 22 11 24 11 ...
#>   ..$ nuts1       : Factor w/ 111 levels "Akdeniz","Åland",..: 55 100 100 55 106 87 106 58 76 64 ...
#>   ..$ nuts2       : Factor w/ 309 levels "Abruzzo","Adana",..: 209 201 201 114 308 158 308 30 298 63 ...
#>   ..$ nuts3       : chr [1:1429] "Lappi" "Norrbottens län" "Västerbottens län" "Kainuu" ...
#>  $ 2006:'data.frame':	1458 obs. of  13 variables:
#>   ..$ id          : chr [1:1458] "PL614" "DE80B" "DE600" "UKE12" ...
#>   ..$ country     : Factor w/ 35 levels "Austria","Belgium",..: 26 11 11 35 26 11 11 35 11 35 ...
#>   ..$ iso2        : Factor w/ 35 levels "AT","BE","BG",..: 29 7 7 13 29 7 7 13 7 13 ...
#>   ..$ iso3        : Factor w/ 35 levels "AUT","BEL","BGR",..: 29 7 7 13 29 7 7 13 7 13 ...
#>   ..$ country_code: int [1:1458] 616 276 276 826 616 276 276 826 276 826 ...
#>   ..$ nuts0_id    : Factor w/ 35 levels "AT","BE","BG",..: 28 7 7 35 28 7 7 35 7 35 ...
#>   ..$ nuts1_id    : Factor w/ 115 levels "AT1","AT2","AT3",..: 79 19 17 106 76 20 20 105 19 106 ...
#>   ..$ nuts2_id    : Factor w/ 314 levels "AT11","AT12",..: 220 62 58 285 214 66 66 284 62 285 ...
#>   ..$ nuts3_id    : chr [1:1458] "PL614" "DE80B" "DE600" "UKE12" ...
#>   ..$ nuts0       : Factor w/ 35 levels "Austria","Belgium",..: 26 11 11 35 26 11 11 35 11 35 ...
#>   ..$ nuts1       : Factor w/ 115 levels "Akdeniz","Åland",..: 80 53 32 107 84 55 55 66 53 107 ...
#>   ..$ nuts2       : Factor w/ 314 levels "Abruzzo","Adana",..: 126 156 94 71 198 281 281 158 156 71 ...
#>   ..$ nuts3       : chr [1:1458] "Grudziądzki" "Mecklenburg-Strelitz" "Hamburg" "East Riding of Yorkshire" ...
#>  $ 2010:'data.frame':	1449 obs. of  13 variables:
#>   ..$ id          : chr [1:1449] "AT111" "AT112" "AT113" "AT121" ...
#>   ..$ country     : Factor w/ 35 levels "Austria","Belgium",..: 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ iso2        : Factor w/ 35 levels "AT","BE","BG",..: 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ iso3        : Factor w/ 35 levels "AUT","BEL","BGR",..: 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ country_code: int [1:1449] 40 40 40 40 40 40 40 40 40 40 ...
#>   ..$ nuts0_id    : Factor w/ 35 levels "AT","BE","BG",..: 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ nuts1_id    : Factor w/ 115 levels "AT1","AT2","AT3",..: 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ nuts2_id    : Factor w/ 312 levels "AT11","AT12",..: 1 1 1 2 2 2 2 2 2 2 ...
#>   ..$ nuts3_id    : chr [1:1449] "AT111" "AT112" "AT113" "AT121" ...
#>   ..$ nuts0       : Factor w/ 35 levels "Austria","Belgium",..: 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ nuts1       : Factor w/ 115 levels "Akdeniz","Åland",..: 70 70 70 70 70 70 70 70 70 70 ...
#>   ..$ nuts2       : Factor w/ 312 levels "Abruzzo","Adana, Mersin",..: 33 33 33 165 165 165 165 165 165 165 ...
#>   ..$ nuts3       : chr [1:1449] "Mittelburgenland" "Nordburgenland" "Südburgenland" "Mostviertel-Eisenwurzen" ...
#>  $ 2013:'data.frame':	1475 obs. of  13 variables:
#>   ..$ id          : chr [1:1475] "AT111" "AT112" "AT113" "AT121" ...
#>   ..$ country     : Factor w/ 35 levels "Austria","Belgium",..: 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ iso2        : Factor w/ 35 levels "AT","BE","BG",..: 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ iso3        : Factor w/ 35 levels "AUT","BEL","BGR",..: 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ country_code: int [1:1475] 40 40 40 40 40 40 40 40 40 40 ...
#>   ..$ nuts0_id    : Factor w/ 35 levels "AT","BE","BG",..: 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ nuts1_id    : Factor w/ 115 levels "AT1","AT2","AT3",..: 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ nuts2_id    : Factor w/ 315 levels "AT11","AT12",..: 1 1 1 2 2 2 2 2 2 2 ...
#>   ..$ nuts3_id    : chr [1:1475] "AT111" "AT112" "AT113" "AT121" ...
#>   ..$ nuts0       : Factor w/ 35 levels "Austria","Belgium",..: 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ nuts1       : Factor w/ 115 levels "AKDENIZ","ÅLAND",..: 72 72 72 72 72 72 72 72 72 72 ...
#>   ..$ nuts2       : Factor w/ 315 levels "Abruzzo","Adana, Mersin",..: 34 34 34 166 166 166 166 166 166 166 ...
#>   ..$ nuts3       : chr [1:1475] "Mittelburgenland" "Nordburgenland" "Südburgenland" "Mostviertel-Eisenwurzen" ...
#>  $ 2016:'data.frame':	1517 obs. of  13 variables:
#>   ..$ id          : chr [1:1517] "DE254" "DE255" "DE256" "DE257" ...
#>   ..$ country     : Factor w/ 37 levels "Albania","Austria",..: 12 12 12 12 12 12 12 12 12 12 ...
#>   ..$ iso2        : Factor w/ 37 levels "AL","AT","BE",..: 8 8 8 8 8 8 8 8 8 8 ...
#>   ..$ iso3        : Factor w/ 37 levels "ALB","AUT","BEL",..: 8 8 8 8 8 8 8 8 8 8 ...
#>   ..$ country_code: int [1:1517] 276 276 276 276 276 276 276 276 276 276 ...
#>   ..$ nuts0_id    : Factor w/ 37 levels "AL","AT","BE",..: 8 8 8 8 8 8 8 8 8 8 ...
#>   ..$ nuts1_id    : Factor w/ 124 levels "AL0","AT1","AT2",..: 14 14 14 14 14 14 14 14 14 14 ...
#>   ..$ nuts2_id    : Factor w/ 328 levels "AL01","AL02",..: 54 54 54 54 52 52 52 52 52 52 ...
#>   ..$ nuts3_id    : chr [1:1517] "DE254" "DE255" "DE256" "DE257" ...
#>   ..$ nuts0       : Factor w/ 37 levels "Albania","Austria",..: 12 12 12 12 12 12 12 12 12 12 ...
#>   ..$ nuts1       : Factor w/ 124 levels "AKDENIZ","ÅLAND",..: 12 12 12 12 12 12 12 12 12 12 ...
#>   ..$ nuts2       : Factor w/ 327 levels "Abruzzo","Adana, Mersin",..: 161 161 161 161 186 186 186 186 186 186 ...
#>   ..$ nuts3       : chr [1:1517] "Nürnberg, Kreisfreie Stadt" "Schwabach, Kreisfreie Stadt" "Ansbach, Landkreis" "Erlangen-Höchstadt" ...
#>  $ 2021:'data.frame':	1507 obs. of  13 variables:
#>   ..$ id          : chr [1:1507] "DE254" "DE255" "DE256" "DE257" ...
#>   ..$ country     : Factor w/ 37 levels "Albania","Austria",..: 12 12 12 12 7 7 7 7 7 12 ...
#>   ..$ iso2        : Factor w/ 37 levels "AL","AT","BE",..: 8 8 8 8 7 7 7 7 7 8 ...
#>   ..$ iso3        : Factor w/ 37 levels "ALB","AUT","BEL",..: 8 8 8 8 7 7 7 7 7 8 ...
#>   ..$ country_code: int [1:1507] 276 276 276 276 203 203 203 203 203 276 ...
#>   ..$ nuts0_id    : Factor w/ 37 levels "AL","AT","BE",..: 8 8 8 8 7 7 7 7 7 8 ...
#>   ..$ nuts1_id    : Factor w/ 124 levels "AL0","AT1","AT2",..: 14 14 14 14 12 12 12 12 12 13 ...
#>   ..$ nuts2_id    : Factor w/ 328 levels "AL01","AL02",..: 54 54 54 54 43 43 44 44 45 46 ...
#>   ..$ nuts3_id    : chr [1:1507] "DE254" "DE255" "DE256" "DE257" ...
#>   ..$ nuts0       : Factor w/ 37 levels "Albania","Austria",..: 12 12 12 12 7 7 7 7 7 12 ...
#>   ..$ nuts1       : Factor w/ 124 levels "Akdeniz","Åland",..: 10 10 10 10 20 20 20 20 20 6 ...
#>   ..$ nuts2       : Factor w/ 328 levels "Abruzzo","Adana, Mersin",..: 161 161 161 161 113 113 255 255 163 256 ...
#>   ..$ nuts3       : chr [1:1507] "Nürnberg, Kreisfreie Stadt" "Schwabach, Kreisfreie Stadt" "Ansbach, Landkreis" "Erlangen-Höchstadt" ...

data(namesIT)
str(namesIT)
#> List of 5
#>  $ 2021:'data.frame':	7903 obs. of  9 variables:
#>   ..$ ripartizione     : chr [1:7903] "Nord-ovest" "Nord-ovest" "Nord-ovest" "Nord-ovest" ...
#>   ..$ regione          : chr [1:7903] "Piemonte" "Piemonte" "Piemonte" "Piemonte" ...
#>   ..$ provincia        : chr [1:7903] "Torino" "Torino" "Torino" "Torino" ...
#>   ..$ code             : chr [1:7903] "TO" "TO" "TO" "TO" ...
#>   ..$ code_ripartizione: int [1:7903] 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ code_regione     : int [1:7903] 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ code_provincia   : int [1:7903] 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ code_comune      : int [1:7903] 1001 1002 1003 1004 1006 1007 1008 1009 1010 1011 ...
#>   ..$ comune           : chr [1:7903] "Agliè" "Airasca" "Ala di Stura" "Albiano d'Ivrea" ...
#>  $ 2020:'data.frame':	7903 obs. of  9 variables:
#>   ..$ ripartizione     : chr [1:7903] "Nord-ovest" "Nord-ovest" "Nord-ovest" "Nord-ovest" ...
#>   ..$ regione          : chr [1:7903] "Piemonte" "Piemonte" "Piemonte" "Piemonte" ...
#>   ..$ provincia        : chr [1:7903] "Torino" "Torino" "Torino" "Torino" ...
#>   ..$ code             : chr [1:7903] "TO" "TO" "TO" "TO" ...
#>   ..$ code_ripartizione: int [1:7903] 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ code_regione     : int [1:7903] 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ code_provincia   : int [1:7903] 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ code_comune      : int [1:7903] 1001 1002 1003 1004 1006 1007 1008 1009 1010 1011 ...
#>   ..$ comune           : chr [1:7903] "Agliè" "Airasca" "Ala di Stura" "Albiano d'Ivrea" ...
#>  $ 2019:'data.frame':	7903 obs. of  9 variables:
#>   ..$ ripartizione     : chr [1:7903] "Nord-ovest" "Nord-ovest" "Nord-ovest" "Nord-ovest" ...
#>   ..$ regione          : chr [1:7903] "Piemonte" "Piemonte" "Piemonte" "Piemonte" ...
#>   ..$ provincia        : chr [1:7903] "Torino" "Torino" "Torino" "Torino" ...
#>   ..$ code             : chr [1:7903] "TO" "TO" "TO" "TO" ...
#>   ..$ code_ripartizione: int [1:7903] 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ code_regione     : int [1:7903] 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ code_provincia   : int [1:7903] 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ code_comune      : int [1:7903] 1001 1002 1003 1004 1006 1007 1008 1009 1010 1011 ...
#>   ..$ comune           : chr [1:7903] "Agliè" "Airasca" "Ala di Stura" "Albiano d'Ivrea" ...
#>  $ 2018:'data.frame':	7903 obs. of  9 variables:
#>   ..$ ripartizione     : chr [1:7903] "Nord-ovest" "Nord-ovest" "Nord-ovest" "Nord-ovest" ...
#>   ..$ regione          : chr [1:7903] "Piemonte" "Piemonte" "Piemonte" "Piemonte" ...
#>   ..$ provincia        : chr [1:7903] "Torino" "Torino" "Torino" "Torino" ...
#>   ..$ code             : chr [1:7903] "TO" "TO" "TO" "TO" ...
#>   ..$ code_ripartizione: int [1:7903] 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ code_regione     : int [1:7903] 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ code_provincia   : int [1:7903] 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ code_comune      : int [1:7903] 1001 1002 1003 1004 1006 1007 1008 1009 1010 1011 ...
#>   ..$ comune           : chr [1:7903] "Agliè" "Airasca" "Ala di Stura" "Albiano d'Ivrea" ...
#>  $ 2017:'data.frame':	7903 obs. of  9 variables:
#>   ..$ ripartizione     : chr [1:7903] "Nord-ovest" "Nord-ovest" "Nord-ovest" "Nord-ovest" ...
#>   ..$ regione          : chr [1:7903] "Piemonte" "Piemonte" "Piemonte" "Piemonte" ...
#>   ..$ provincia        : chr [1:7903] "Torino" "Torino" "Torino" "Torino" ...
#>   ..$ code             : chr [1:7903] "TO" "TO" "TO" "TO" ...
#>   ..$ code_ripartizione: int [1:7903] 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ code_regione     : int [1:7903] 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ code_provincia   : int [1:7903] 1 1 1 1 1 1 1 1 1 1 ...
#>   ..$ code_comune      : int [1:7903] 1001 1002 1003 1004 1006 1007 1008 1009 1010 1011 ...
#>   ..$ comune           : chr [1:7903] "Agliè" "Airasca" "Ala di Stura" "Albiano d'Ivrea" ...

data(namesUS)
str(namesUS)
#> List of 1
#>  $ 2018:List of 7
#>   ..$ region         : 'character' chr [1:4] "Northeast" "Midwest" "South" "West"
#>   ..$ state          :'data.frame':	51 obs. of  5 variables:
#>   .. ..$ state_id    : Factor w/ 52 levels "AK","AL","AR",..: 21 13 9 36 39 30 49 2 3 33 ...
#>   .. ..$ state       : Factor w/ 52 levels "Alabama","Alaska",..: 21 16 8 36 39 28 49 1 4 32 ...
#>   .. ..$ state_number: Factor w/ 52 levels "01","02","04",..: 21 16 8 36 39 28 48 1 4 32 ...
#>   .. ..$ region      : chr [1:51] "South" "Midwest" "South" "Midwest" ...
#>   .. ..$ division    : chr [1:51] "South Atlantic" "West North Central" "South Atlantic" "East North Central" ...
#>   ..$ county         :'data.frame':	3224 obs. of  8 variables:
#>   .. ..$ state_id     : chr [1:3224] "NE" "NE" "NE" "NE" ...
#>   .. ..$ state        : Factor w/ 56 levels "Alabama","Alaska",..: 31 31 31 31 31 31 31 31 31 31 ...
#>   .. ..$ state_number : chr [1:3224] "31" "31" "31" "31" ...
#>   .. ..$ county       : chr [1:3224] "Pawnee" "Perkins" "Sioux" "Saline" ...
#>   .. ..$ county_number: chr [1:3224] "133" "135" "165" "151" ...
#>   .. ..$ region       : chr [1:3224] "Midwest" "Midwest" "Midwest" "Midwest" ...
#>   .. ..$ division     : chr [1:3224] "West North Central" "West North Central" "West North Central" "West North Central" ...
#>   .. ..$ geometry     :sfc_GEOMETRY of length 3224; first list element: List of 1
#>   .. .. ..$ : num [1:10, 1:2] -96.5 -96.1 -96 -96 -96 ...
#>   .. .. ..- attr(*, "class")= chr [1:3] "XY" "POLYGON" "sfg"
#>   ..$ district       :'data.frame':	441 obs. of  6 variables:
#>   .. ..$ state_id    : Factor w/ 56 levels "AK","AL","AR",..: 33 33 33 53 53 53 53 53 53 53 ...
#>   .. ..$ state       : Factor w/ 56 levels "Alabama","Alaska",..: 31 31 31 53 53 53 53 53 53 53 ...
#>   .. ..$ state_number: Factor w/ 56 levels "01","02","04",..: 28 28 28 48 48 48 48 48 48 48 ...
#>   .. ..$ district    : chr [1:441] "02" "03" "01" "10" ...
#>   .. ..$ region      : Factor w/ 4 levels "Midwest","Northeast",..: 1 1 1 4 4 4 4 4 4 4 ...
#>   .. ..$ division    : Factor w/ 9 levels "East North Central",..: 8 8 8 6 6 6 6 6 6 6 ...
#>   ..$ district_county:'data.frame':	3837 obs. of  8 variables:
#>   .. ..$ state_id     : Factor w/ 56 levels "AK","AL","AR",..: 33 33 33 33 33 33 33 33 33 33 ...
#>   .. ..$ state        : Factor w/ 56 levels "Alabama","Alaska",..: 31 31 31 31 31 31 31 31 31 31 ...
#>   .. ..$ state_number : Factor w/ 56 levels "01","02","04",..: 28 28 28 28 28 28 28 28 28 28 ...
#>   .. ..$ county_number: chr [1:3837] "007" "093" "051" "091" ...
#>   .. ..$ district     : chr [1:3837] "03" "03" "01" "03" ...
#>   .. ..$ region       : Factor w/ 4 levels "Midwest","Northeast",..: 1 1 1 1 1 1 1 1 1 1 ...
#>   .. ..$ division     : chr [1:3837] "West North Central" "West North Central" "West North Central" "West North Central" ...
#>   .. ..$ county       : chr [1:3837] "Banner" "Howard" "Dixon" "Hooker" ...
#>   ..$ urban_area     : 'character' chr [1:3601] "Tucson, AZ" "Alturas, CA" "Davenport, IA--IL" "Waynesboro, PA--MD" ...
#>   ..$ division       :'data.frame':	51 obs. of  2 variables:
#>   .. ..$ region  : chr [1:51] "South" "Midwest" "South" "Midwest" ...
#>   .. ..$ division: chr [1:51] "South Atlantic" "West North Central" "South Atlantic" "East North Central" ...